Combinatorial proofs of some limit formulas involving orthogonal polynomials

نویسندگان

  • Jacques Labelle
  • Yeong-Nan Yeh
چکیده

The object of this paper is to prove combinatorially several (13 of them) limit formulas relating different families of hypergeometric orthogonal polynomials in Askey’s chart classifying them. We first find a combinatorial model for Hahn polynomials which, as pointed out by Foata at the ICM (1983), “contains” models for Jacobi, Meixner, Krawtchouk, Laguerre and Charlier polynomials. Seven limit formulas are proved by “looking at surviving structures” when taking the limit. A simple model, T-structures, is then used to prove (using a different technique) four more limit formulas involving Meixner-Pollaczek, Krawtchouk, Laguerre, Charlier and Hermite polynomials. The theory of combinatorial octopuses (of F. Bergeron) is recalled and two more limits are demonstrated using new models of Meixner-Pollaczek, Laguerre, Gegenbauer and Hermite polynomials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion Formulas Involving Orthogonal Polynomials and Some of Their Applications

We derive inversion formulas involving orthogonal polynomials which can be used to find coefficients of differential equations satisfied by certain generalizations of the classical orthogonal polynomials. As an example we consider special symmetric generalizations of the Hermite polynomials.

متن کامل

Some combinatorial formulas for the partial r-Bell polynomials

The partial r-Bell polynomials generalize the classical partial Bell polynomials (coinciding with them when r = 0) by assigning a possibly different set of weights to the blocks containing the r smallest elements of a partition no two of which are allowed to belong to the same block. In this paper, we study the partial r-Bell polynomials from a combinatorial standpoint and derive several new fo...

متن کامل

Abacus Proofs of Schur Function Identities

This article uses combinatorial objects called labeled abaci to give direct combinatorial proofs of many familiar facts about Schur polynomials. We use abaci to prove the Pieri rules, the Littlewood–Richardson rule, the equivalence of the tableau definition and the determinant definition of Schur polynomials, and the combinatorial interpretation of the inverse Kostka matrix (first given by Eğec...

متن کامل

Combinatorial Proofs of Some Identities for the Fibonacci and Lucas Numbers

We study the previously introduced bracketed tiling construction and obtain direct proofs of some identities for the Fibonacci and Lucas numbers. By adding a new type of tile we call a superdomino to this construction, we obtain combinatorial proofs of some formulas for the Fibonacci and Lucas polynomials, which we were unable to find in the literature. Special cases of these formulas occur in ...

متن کامل

Combinatorial proofs of some formulas for triangular tilings

We provide requested combinatorial proofs of some formulas involving numbers which enumerate the tilings of a 2 × n triangular strip with triangles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 79  شماره 

صفحات  -

تاریخ انتشار 1990